

Status of the New g-2 Experiment at Fermilab

Mandy Rominsky Fermilab

What is g-2?

- Magnetic moments: Fundamental property of a particle
- The spin and magnetic moment are related by:

$$\vec{\mu} = g_s \left(\frac{q}{2m}\right) \vec{s}$$

- Lande factor (g): Predicted to be 2, but found experimentally to be > 2
 - Radiative corrections

Anomalous Magnetic Moments

Define

$$a = \frac{g - 2}{2}$$

- Current value of electron: $a^{exp}_{e} = 1159652180.73$ (28) x 10^{-12}
 - Hanneke et al, PRL100(2008) 120801
- Agrees with the Standard Model
 - $a^{Th}_{e} = 1159652181.78(77) \times 10^{-12}$

g-2 and Theory Calculations

• Break the Standard Model prediction into components:

$$a_\mu^{SM} = a_\mu^{QED} + a_\mu^{Weak} + a_\mu^{Had}$$

SM Prediction: $a_{\mu}^{SM} = 116591802(49) \times 10^{-11}$

华

Theoretical vs Experimental Values

- $a_{\mu}^{\text{exp}} = 116\ 592\ 089\ (63)\ x\ 10^{-11}$
 - Most recent result from BNL

•
$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 287 (80) \times 10^{-11} \implies 3\sigma$$

Note this is larger than the EW contribution!

- Theorists working hard to reduce errors!
- New experiment needed

Davier, ICFA 2011

Measuring g-2

- Nature allows us to exploit certain properties
 - Can measure a_{μ} directly using cyclotron frequency and Larmor precession frequency

$$\omega_c = \frac{eB}{mc}$$
 $\omega_s = g \frac{eB}{2mc}$

$$\omega_{a} = \omega_{s} - \omega_{c},
= \frac{eB}{mc} \left(\frac{g}{2} - 1 \right),
= \frac{eB}{mc} \frac{g - 2}{2},
= a_{\mu} \frac{eB}{mc},$$

Vertical confinement

- One problem with storage rings How do you confine the muons?
 - Apply an electric field, which modfies this equation:

$$\vec{\omega}_a = \frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) (\vec{\beta} \times \vec{E}) \right]$$

- Great, now we have a more complicated measurement
 - But we have another trick up our sleeves: "magic momentum"
 - By choosing the "magic momentum", the coefficient in front of the E field vanishes

$$\gamma = 29.3$$
, $p_{\mu} = 3.09$ GeV/c

Measuring g-2

- Store muons in uniform field
- Measure the magnetic field using NMR probes (*B*)
- Count decay positrons to get precession frequency (ω_a)

$$\omega_a = a_\mu \frac{eB}{mc}$$

Improvements For E989

- Longer beam line reduces "hadronic flash" and allows for more muons
- Improved detectors

E821 Error	Size	Plan for the New $(g-2)$ Experiment	Goal
	[ppm]		[ppm]
Gain changes	0.12	Better laser calibration and low-energy threshold	0.02
Lost muons	0.09	Long beamline eliminates non-standard muons	0.02
Pileup	0.08	Low-energy samples recorded; calorimeter segmentation	0.04
СВО	0.07	New scraping scheme; damping scheme implemented	0.04
E and pitch	0.05	Improved measurement with traceback	0.03
Total	0.18	Quadrature sum	0.07

Calorimeters

- Measures time and position
- PbF2 Crystals
 - Readout: SiPMs
 - Segmented (improve separation)
- Conducted a beam test (T1005) with segmented calorimeter
- Second beam test at SLAC in July

Tracking in g-2

- Deviations from uniform circular motion lead to ppm level corrections to the precession frequency
- Need a clear picture of the muon beam to correct for these effects
- Constraints: Located in vacuum, minimal impact on B field

g-2 Tracker Design

- Mylar straws metalized with Al on outside and Au/Al on the inside.
- U-V doublet planes 7.5 degrees from vertical
- Inside the vacuum (10⁻⁶ Torr)

Reuse BNL Ring

Moving the Ring

- Super conducting coils had to moved in one piece
 - One side couldn't twist more than 3mm respective to another side

By Land and Sea

Arrived!

MC-1

MC-1

Conclusions

- The ring has arrived at Fermilab and our building is almost complete
- The detector group is busy testing and finalizing designs for the new detectors

Looking forward to presenting results in the near future!

Backups

g-2: Theory Work

- Much progress has been made since the difference between theory and experiment was first shown by the BNL g-2 experiment
- The two largest uncertainties in the theory calculation:
 - Hadronic Vacuum Polarization
 - Hadronic Light by Light

•	Contribution	Result in 10^{-11} units
•	QED (leptons)	$11\ 6584\ 718.09 \pm 0.14 \pm 0.04_{\alpha}$
\longrightarrow	HVP(lo)	$6908 \pm 39_{\rm exp} \pm 19_{\rm rad} \pm 7_{\rm pQCD}$
	HVP(ho)	$-97.9 \pm 0.9_{\rm exp} \pm 0.3_{\rm rad}$
\longrightarrow	HLxL	105 ± 26
	${ m EW}$	$152 \pm 2 \pm 1$
•	Total SM	$116\ 591\ 785 \pm 51$

^{*}Courtesy E. De Rafael, arXiv 0809.3025

卆

g-2: Theory Work

- Hadronic Vacuum Polarization (LO)
 - Current uncertainty is $\sim 0.5\%$ (from experiments)
 - Additional data from VEPP-2000, BELLE, BES-3
 - Development: Lattice already at 5%
 - In 5 years, expecting to reduce this error to $\sim 1-2\%$

g-2: Theory Work

- Hadronic Light by Light
 - Current uncertainty is about $\sim 25\%$ (from models)
 - Development: Lattice initiatives targeting HLBL
 - In 5 years, possibly reduce this uncertainty to $\sim 10\%$
 - Up to now, this is all theoretical work, now able to experimentally verify some models

Results from BNL E821

Final result: BNL aµ(exp) = 116 592 080(63) x 10^{-11}

Total statistical uncertainty: 0.46 ppm

Total systematic uncertiainty: 0.28 ppm

Theoretical Calculation

- Normally the Hadronic part is broken up into 3 pieces:
 - Hadronic Vacuum polarizations (LO)
 - HVP (Higher order)
 - Hadronic Light by Light

$$a_{\mu}^{\text{QED}} = (11\ 658\ 471.809 \pm 0.015) \times 10^{-10}$$
 $a_{\mu}^{had} = (693.0 \pm 4.9) \times 10^{-10}$
 $a_{\mu}^{\text{weak}} = (15.4 \pm 0.2) \times 10^{-10}$

LO vacuum polarization : 692.3 ± 4.2

HO vacuum polarization : -9.8 ± 0.1

LBL : 10.5 ± 2.6

Upgrades to the Accelerator Complex

- Need 21 times more statistics compared to BNL
- Upgrade to the accelerator complex to 15Hz
 - Allows us to run with Nova

- Recycler
 - 8 GeV protons from Booster
 - Re-bunched in Recycler
 - New connection from Recycler to P1 line (existing connection is from Main Injector)
- Target station
 - Target
 - Focusing (lens)
 - Selection of magic momentum
- Beamlines / Delivery Ring
 - P1 to P2 to M1 line to target
 - Target to M2 to M3 to Delivery Ring
 - Proton removal
 - Extraction line (M4) to g-2 stub to ring in MC1 building